Pertussis toxin treatment blocks hyperpolarization by muscarinic agonists in chick atrium.
نویسندگان
چکیده
Atrial and ventricular adenylate cyclase activity and atrial membrane potentials were measured in hearts from hatched chicks at 2-3 days after intravenous administration of pertussis toxin (0.5-1.0 micrograms, total) or saline. Both in atrium and ventricle, treatment with pertussis toxin antagonized inhibition by carbachol of basal and isoproterenol-stimulated adenylate cyclase activity without changing either basal or isoproterenol-stimulated adenylate cyclase. In atria from pertussis toxin-treated animals (5.4 mM potassium), carbachol hyperpolarized the resting membrane by 0.3 +/- 0.3 mV (n = 9) and did not increase resting potassium conductance. In contrast, carbachol hyperpolarized the resting membrane by 4.5 +/- 0.8 mV (n = 11) and increased resting potassium conductance more than 4-fold in saline-treated animals. Carbachol did not significantly affect the atrial action potential peak or duration at 50% repolarization of pertussis toxin-treated animals. This muscarinic agonist reduced action potential peak by 7.8 +/- 1.2 mV and the duration at 50% repolarization by 22.1 +/- 3.0 msec in atria from saline-treated animals. Pertussis toxin treatment also prevented the negative inotropic effect and the inhibition of calcium-dependent action potentials caused by carbachol in atrial muscle. Neither the affinity nor the maximal specific binding of [3H]quinuclidinyl benzilate in ventricular homogenates was changed by pertussis toxin treatment. The apparent affinity of carbachol for muscarinic receptor was slightly (approximately 2-fold) diminished in pertussis toxin-treated animals. The inhibition of carbachol-induced hyperpolarization by pertussis toxin treatment implicates a guanosine 5'-triphosphate-dependent protein (Ni or a similar protein) as an essential link that permits muscarinic receptor to regulate atrial potassium channels.
منابع مشابه
Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria.
Muscarinic agonists can stimulate rather than inhibit cardiac muscle in some preparations. In left atria from hatched chicks, treatment with pertussis toxin reversed the membrane action of carbachol from hyperpolarization to depolarization and reversed the inotropic effect of carbachol from negative to positive. Acetylcholine also depolarized the membrane and increased the force of contraction ...
متن کاملPertussis toxin does not inhibit muscarinic-receptor-mediated phosphoinositide hydrolysis or calcium mobilization.
Pertussis toxin was used to examine the role of the inhibitory guanine nucleotide regulatory protein, Ni, in muscarinic-receptor-mediated stimulation of phosphoinositide turnover and calcium mobilization. In cultured chick heart cells, pertussis-toxin treatment inhibited muscarinic-receptor-mediated attenuation of isoprenaline-stimulated cyclic AMP accumulation. This finding is consistent with ...
متن کاملA novel M3 muscarinic acetylcholine receptor is expressed in chick atrium and ventricle.
Prior studies have suggested that heart expresses only the M2 isoform of the muscarinic receptor (Peralta, E.G., Ashkenazi, A., Winslow, J.W., Smith, D.H., Ramachandran, J., and Capon, D.J. (1987) EMBO J. 6, 3923-3929). Tietje and Nathanson (Tietje, K.M., and Nathanson, N. M. (1991) J. Biol. Chem. 266, 17382-17387) have recently demonstrated that the chick heart may be unique since it expresses...
متن کاملG(o) controls the hyperpolarization-activated current in embryonic stem cell-derived cardiocytes.
Hyperpolarization current (I(f)) is an important player in controlling heart rate and is stimulated by cAMP and inhibited by members of the pertussis toxin-sensitive G-protein G(i)/G(o) family. We have successfully derived cardiocytes from embryonic stem cells lacking G(o) or G(i2) and G(i3). We have established that both basal and isoproterenol-stimulated activities of I(f) in these cardiocyte...
متن کاملDevelopment of muscarinic cholinergic inhibition of adenylate cyclase in embryonic chick heart. Its relationship to changes in the inhibitory guanine nucleotide regulatory protein.
Parasympathetic and sympathetic innervation of the embryonic chick heart proceed non-coordinately. beta-Adrenergic agonists mediate an increase in beating rate in embryonic chick heart prior to ingrowth of the vagus nerve (Culver, N. G., and Fishman, D. A. (1977) Am. J. Physiol. 232, R116-R123) while muscarinic agonists exert relatively little effect on beating rate in hearts 2-4 days in ovo (P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 57 5 شماره
صفحات -
تاریخ انتشار 1985